Rational Approximation to e^{-x}

Donald J. Newman*
Belfer Graduate School of Science, Yeshiva University, New York, New York 10033
Communicated by Oved Shisha

Recently much attention has been paid to the problem of obtaining uniform approximations to e^{-x} by rational functions on the whole positive axis. It has been shown, for example, that one can achieve an error of roughly 3^{-n}, and not much better, by using reciprocals of polynomials of degree n, see [1] and [2].

One problem left open was whether one can achieve better than a c^{n} error by the use of general rational functions. We show, in this note, that one cannot.

Theorem. Let $P(x), Q(x)$ be any polynomials of degree $<n$. There must be a point on the positive axis where

$$
\left|e^{-x}-\frac{P(x)}{Q(x)}\right|>1280^{-n}
$$

Proof. The simple substitution of $x \log 2$ for x changes e^{-x} to 2^{-x} and this will prove more convenient for our calculations. We show, in fact, that $\left|2^{-x}-P(x) / Q(x)\right|>1280^{-n}$ somewhere in $[0,3 n]$. Suppose, otherwise, that

$$
\begin{equation*}
2^{-x} Q(x)-P(x)\left|\leqslant 1280^{-n}\right| Q(x) \mid \quad \text { throughout }[0,3 n] . \tag{1}
\end{equation*}
$$

Now normalize so that

$$
\begin{equation*}
\max _{[0, n]}|Q(x)|=1 \tag{2}
\end{equation*}
$$

It follows that the function $Q((n / 2) t+n / 2)$ is bounded by 1 on $[-1,1]$ and is, therefore, bounded by the Tchebychev polynomial outside $[-1,1]$. This tells us that, throughout [0,3n], $|Q(x)| \leqslant T_{n}(5)=\frac{1}{2}\left(5+(24)^{1 / 2}\right)^{n}+$ $\frac{1}{2}\left(5-(24)^{1 / 2}\right)^{n}<10^{n}$. If we insert this estimate into (1) we obtain

$$
\begin{equation*}
\left|2^{-x} Q(x)-P(x)\right| \leqslant 2^{-7 n} \quad \text { throughout }[0,3 n] . \tag{3}
\end{equation*}
$$

[^0]Next we introduce the difference operator Δ defined, as usual, by $\Delta f(x)=f(x-1)-f(x)$, and we recall the usual notations in the operator calculus, e.g. $\left(2 \Delta^{2}-3\right) f(x)$ means $2 \Delta(\Delta f(x))-3 f(x)$, etc.

If we call $2^{-x} Q(x)-P(x)=R(x)$, and we observe that $\Delta^{n} P(x)=0$ (because $\operatorname{deg} P<n$) then we obtain

$$
\Delta^{n}\left(2^{-x} Q(x)\right)=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} R(x+j) .
$$

For x in $[0,2 n]$, moreover, (3) is applicable to each of the terms $R(x+j)$ and we obtain the estimate

$$
\left|\Delta^{n} 2^{-x} Q(x)\right| \leqslant 2^{-7 n} \sum_{j=0}^{n}\binom{n}{j}=2^{-6 n}
$$

Now we use the "shift rule" (or ordinary induction) to deduce the identity $\Delta^{n} 2^{-x} Q(x)=2^{-(x+n)}(\Delta-1)^{n} Q(x)$ and inserting this into the above estimate gives

$$
\begin{equation*}
(1-\Delta)^{n} Q(x) \leqslant 2^{x+n} 2^{-6 n} \leqslant 2^{-3 n} \quad \text { throughout }[0,2 n] \tag{4}
\end{equation*}
$$

At this point we call $(1-\Delta)^{n} Q(x)=S(x)$ so that $Q(x)=(1-\Delta)^{-n} S(x)$. The expansion

$$
(1-\Delta)^{-n}=\sum_{k=0}^{\infty}\binom{n+k-1}{k} \Delta^{k}
$$

is valid when applied to polynomials and $\operatorname{since} \operatorname{deg} S<n$, we have, in fact,

$$
\begin{aligned}
Q(x) & =\sum_{k=0}^{n}\binom{n+k-1}{k} \Delta^{k} S(x) \\
& =\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n+k-1}{k}\binom{k}{j}(-1)^{k-j} S(x+j)
\end{aligned}
$$

If, finally, we restrict x to lie in $[0, n]$ then all the terms $S(x \div j)$ are subject to (4) and there results the estimate

$$
\begin{aligned}
|Q(x)| & \leqslant 2^{-3 n} \sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n+k-1}{k}\binom{k}{j}=2^{-3 n} \sum_{k=0}^{n}\binom{n+k-1}{k} 2^{k} \\
& \leqslant 2^{-2 n} \sum_{k=0}^{n}\binom{n+k-1}{k}=2^{-2 n}\binom{2 n}{n}<1
\end{aligned}
$$

This holding throughout $[0, n]$ flatly contradicts (2) and the proof is complete.

References

1. W. J. Cody, Y. Meinardus and R. S. Varga, Tchebychev rational approximato $e^{-x} . . .$, J. Approximation Theory 2 (1969), 50-65.
2. A. Schonhage, Zur Rationalen Approximirbarkeit von e^{-x} uber $[0, \infty]$, J. Approximation Theory, to appear.

[^0]: * Supported in part by AF Grant No. 69-1736.

